Chapter Six: Transcendental Functions

Functions can be classified into two groups called algebraic functions and transcendental functions.

7.1 Inverse Functions

One-to-One Function

DEFINITION A function $f(x)$ is one-to-one on a domain D if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$ in D.

Fig. 1 (b) Not one-to-one: Graph intersects one or more horizontal lines more than once.

Fig. 1 (a) One-to-one: Graph intersects each horizontal line once.

Inverse Functions

DEFINITION Suppose that f is a one-to-one function on a domain D with range R. The inverse function f^{-1} is defined by

$$
f^{-1}(b)=a \text { if } f(a)=b
$$

The domain of f^{-1} is R and the range of f^{-1} is D.

Example 1: Find the inverse of $y=3+6 x$.
Solution: 1. Solve for $x=f(y): 6 x=y-3 \rightarrow x=\frac{y}{6}-\frac{1}{2}$
2. Interchange x and $\mathrm{y}: y=\frac{x}{6}-\frac{1}{2}$

Example 2: Find the inverse of $y=x^{2}, x \geq 0$.
Solution: 1 . Solve for $x=f(y): x^{2}=y \rightarrow x=\sqrt{y}$
2. Interchange x and $y: y=\sqrt{x}, x \geq 0$.

Inverse Trigonometric Function

The inverse functions for the six basic trigonometric functions

$$
\begin{array}{lll}
y=\sin ^{-1} x & \text { or } & y=\arcsin x \\
y=\cos ^{-1} x & \text { or } & y=\arccos x \\
y=\tan ^{-1} x & \text { or } & y=\arctan x \\
y=\cot ^{-1} x & \text { or } & y=\operatorname{arccot} x \\
y=\sec ^{-1} x & \text { or } & y=\operatorname{arcsec} x \\
y=\csc ^{-1} x & \text { or } & y=\operatorname{arccsc} x
\end{array}
$$

NOTE : $y=\sin ^{-1} x \neq \frac{1}{\sin x}$

Derivatives of the Inverse Trigonometric Function

1. $\frac{d\left(\sin ^{-1} u\right)}{d x}=\frac{d u / d x}{\sqrt{1-u^{2}}}, \quad|u|<1$
2. $\frac{d\left(\cos ^{-1} u\right)}{d x}=-\frac{d u / d x}{\sqrt{1-u^{2}}}, \quad|u|<1$
3. $\frac{d\left(\tan ^{-1} u\right)}{d x}=\frac{d u / d x}{1+u^{2}}$
4. $\frac{d\left(\cot ^{-1} u\right)}{d x}=-\frac{d u / d x}{1+u^{2}}$
5. $\frac{d\left(\sec ^{-1} u\right)}{d x}=\frac{d u / d x}{|u| \sqrt{u^{2}-1}}, \quad|u|>1$
6. $\frac{d\left(\csc ^{-1} u\right)}{d x}=\frac{-d u / d x}{|u| \sqrt{u^{2}-1}}, \quad|u|>1$

Integration Formulas

1. $\int \frac{d u}{\sqrt{1-u^{2}}}=\sin ^{-1}(u)+C$
2. $\int \frac{-d u}{\sqrt{1-u^{2}}}=\cos ^{-1}(u)+C$
3. $\int \frac{d u}{1+u^{2}}=\tan ^{-1} u+C$
4. $\int \frac{d u}{u \sqrt{u^{2}-1}}=\sec ^{-1} u+C$
5. $\int \frac{-d u}{1+u^{2}}=\cot ^{-1} u+C$
6. $\int \frac{-d u}{u \sqrt{u^{2}-1}}=\csc ^{-1} u+C$

Example: What is the angle that has a sine equal to $\sqrt{2} / 2$
Solution: $\sin ^{-1} \frac{\sqrt{2}}{2}=\pi / 4 .\left(\sin \frac{\pi}{4}=\sqrt{2} / 2\right.$.

Solving using a triangle

Example: Evaluate $\sec \left(\tan ^{-1} \frac{x}{3}\right)$.
Solution:

Let $\theta=\tan ^{-1} x / 3$
$\tan \theta=x / 3 \rightarrow \sec \left(\tan ^{-1} \frac{x}{3}\right)=\sec \theta=\sqrt{x^{2}+9} / 3$

Examples: Evaluate the following
(a) $\frac{d}{d x} \cos ^{-1} x^{2}=-\frac{1}{\sqrt{1-\left(x^{2}\right)^{2}}}(2 x)$.
(b) $\quad \frac{d}{d x} \sec ^{-1} 5 x^{4}=\frac{1}{\left|5 x^{4}\right| \sqrt{\left(5 x^{4}\right)^{2}-1}}\left(20 x^{3}\right)=\frac{4}{x \sqrt{\left(5 x^{4}\right)^{2}-1}}$
(c) $\int_{0}^{1} \frac{d x}{1+x^{2}}=\left.\tan ^{-1} x\right|_{0} ^{1}=\tan ^{-1}(1)-\tan ^{-1}(0)=\frac{\pi}{4}-0=\pi / 4$

Home Work: Exercises 7.7 Pages 530-532.

7.2 Natural Logarithms

$\ln x$ is the function in the range $(0, \infty)$ and is defined by:
Definition: The Natural Logarithm Function

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

Thus, the natural logarithm is the area under the curve $f(t)=1 / t$ between $t=1$ and $t=x$.

If $x=1$,

$$
\ln x=\ln 1=\int_{1}^{1} \frac{1}{t} d t=0
$$

The Derivative of $y=\ln x$

$$
\frac{d}{d x} \ln x=\frac{d}{d x} \int_{1}^{x} \frac{1}{t} d t=\frac{1}{x}
$$

In general, if $y=\ln u$ and $u=f(x)$,

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=\frac{1}{u} \cdot \frac{d u}{d x}
$$

Example: $\frac{d}{d x} \ln 2 x=\frac{1}{2 x}(2)=\frac{1}{x}$.
$\frac{d}{d x} \ln \left(x^{2}+3\right)=\frac{1}{x^{2}+3}(2 x)=2 x /\left(x^{2}+3\right)$.
Example: if $y=\ln \left(3 x^{2}+4\right)$, find $d y / d x$.
Solution: $\frac{d y}{d x}=\frac{1}{3 x^{2}+4} .(6 x)$.

Example: if $\mathrm{y}=\ln \left(\sin 7 x^{3}\right)$, find $\mathrm{dy} / \mathrm{dx}$.
Solution: $\frac{d y}{d x}=\frac{1}{\sin 7 x^{3}} \cdot \cos 7 x^{3} \cdot\left(21 x^{2}\right)=\frac{21 x^{2} \cos 7 x^{3}}{\sin 7 x^{3}}$.

Properties of Natural Logarithms (Inx)

For any numbers $\mathrm{a}>0$ and $\mathrm{x}>0$:

1. $\ln (a x)=\ln a+\ln x$
2. $\operatorname{Ln}(a / x)=\ln a-\ln x$
3. $\operatorname{Ln}\left(x^{n}\right)=n \ln x$
4. $\ln (1 / x)=-\ln x$
5. $\operatorname{Ln}(0)=-\infty$.

NOTE: The Integral $\int \frac{d u}{u}$
If u is a differentiable function that is never zero,

$$
\int \frac{d u}{u}=\ln |u|+C
$$

Examples:
(a) $\int \frac{\cos \theta}{1+\sin \theta} d \theta=\ln |1+\sin \theta|+C$.
$u=1+\sin \theta \rightarrow d u=\cos \theta d \theta$
$\therefore \int \frac{\cos \theta}{1+\sin \theta} d \theta=\int \frac{d u}{u}=\ln |u|+C$
$=\ln |1+\sin \theta|+C$
(b) $\int \frac{x^{3}+1}{x^{4}+4 x} d x=\frac{1}{4} \int \frac{4\left(x^{3}+1\right) d x}{x^{4}+4 x}=\frac{1}{4} \ln \left|x^{4}+4 x\right|+C$
(c) $\int_{0}^{2} \frac{2 x}{x^{2}-5} d x . \quad$ Let $\mathrm{u}=\mathrm{x}^{2}-5 \quad \rightarrow \quad \therefore \mathrm{du}=2 \mathrm{xdx}$
$\therefore \mathrm{x}=0 \rightarrow \mathrm{u}=(0)^{2}-5=-5$
$\therefore \mathrm{x}=2 \rightarrow \mathrm{u}=(2)^{2}-5=-1$
$\therefore \int_{0}^{2} \frac{2 x}{x^{2}-5} d x=\int_{-5}^{-1} \frac{d u}{u}=\left.\ln |u|\right|_{-5} ^{-1}=\ln |-1|-\ln |-5|=0-\ln 5=$ $-\ln 5$.
(d) $\int_{-\pi / 2}^{\pi / 2} \frac{4 \cos x}{3+2 \sin x} d x=\int_{1}^{5} \frac{2 d u}{u}$
$=\left.2 \ln |u|\right|_{1} ^{5}=2(\ln 5-\ln 1)=2 \ln 5$.
OR: $\int_{-\pi / 2}^{\pi / 2} \frac{4 \cos x}{3+2 \sin x} d x=\int_{-\pi / 2}^{\pi / 2} \frac{2 d u}{u}$
$=2 \ln |3+2 \sin x| \left\lvert\, \begin{gathered}\frac{\pi}{2} \\ -\frac{\pi}{2}\end{gathered}=2\{\ln (3+2)-\ln (3-2)\}\right.$
$=2\{\ln 5-\ln 1\}=2 \ln 5$.

Home work: THOMAS'S CALCULUS - $11^{\text {th }}$ Edition, Page 484

Exercises 7.2 : (Using the Properties of Logarithms, Derivative of Logarithms, Integration).

7.3 The Exponential Function $\left(y=e^{x}\right.$ or $\left.y=\exp x\right)$

The function $y=\ln x:$ domain $(0, \infty)$ and range $(-\infty, \infty)$.
The inverse of $\ln x$ is $\ln ^{-1} x:$ domain $(-\infty, \infty)$ and range $(0, \infty)$.
$y=\ln ^{-1} x=e^{x}$.
NOTE: $\ln ^{-1} 1=e \ln ^{-1} 1=e \rightarrow \ln e=1$

$$
e=2.71828
$$

$\because e^{x}=\ln ^{-1} x\left(e^{x}\right.$ is the inverse function of $\left.\ln x\right)$
$\therefore \ln e^{x}=x($ for all $x)$, and
$e^{\ln x}=x($ for all $x>0)$.

Properties of e^{x}

1. $\mathrm{e}^{\mathrm{x}}>0$ for every $x \in R$
2. $e^{c x}=\left(e^{x}\right)^{c}$
3. $e^{0}=1$
4. $\lim _{x \rightarrow \infty} e^{x}=\infty$
5. $e^{1}=e$
6. $\lim _{x \rightarrow-\infty} e^{x}=0$
7. $e^{x+y}=e^{x} \cdot e^{y}$
8. $\ln e^{x}=x$
9. $e^{x-y}=e^{x} / e^{y}$
10. $e^{\ln x}=x$
11. $e^{-x}=1 / e^{x}$
12. $a^{x}=\left(e^{\ln a}\right)^{x}=e^{x \ln a}$

The Derivative and Integral of e^{x}

Let $y=e^{x}$,
Taking \ln for both sides $\rightarrow \ln y=\ln e^{x}=x \ln e=x$

$$
\therefore \ln y=x
$$

d. w. r. t. $x \rightarrow \frac{1}{y} \cdot \frac{d y}{d x}=1 \rightarrow \frac{d y}{d x}=y=e^{x}$

$$
\therefore \frac{d e^{x}}{d x}=e^{x}
$$

In general, if $y=e^{u}, u=f(x)$,

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=e^{u} \frac{d u}{d x}
$$

$$
\int e^{u} d u=e^{u}+C
$$

Examples
(a) $\frac{d e^{\tan x}}{d x}=e^{\tan x} \sec ^{2} x$.
(b) $\frac{d 5 e^{-x}}{d x}=5 e^{-x}(-1)=-5 e^{-x}$.
(c) $\int e^{x^{3}} x^{2} d x=\frac{1}{3} \int e^{x^{3}} \cdot 3 x^{2} d x=\frac{1}{3} e^{x^{3}}+C$.
(d) $\int e^{-2 x} d x=-\frac{1}{2} \int e^{-2 x} .(-2) d x=-\frac{1}{2} e^{-2 x}+C$.
(e) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x=2 \int \frac{e^{\sqrt{x}}}{2 \sqrt{x}} d x=2 e^{\sqrt{x}}+C . \quad u=\sqrt{x} \rightarrow d u=\frac{1}{2} x^{-\frac{1}{2}} d x=\frac{1}{2 \sqrt{x}} d x$.
(f) $\int_{0}^{\pi / 2} e^{\sin x} \cos x d x=e^{\sin x} \left\lvert\, \begin{gathered}\pi / 2 \\ 0\end{gathered}=e^{1}-e^{0}=e-1\right.$.
(g) $\left.\int_{0}^{\ln 2} e^{3 x} d x=\frac{1}{3} \int_{0}^{\ln 2} e^{3 x} 3 d x=\frac{1}{3} e^{3 x} \right\rvert\, \begin{gathered}\ln 2 \\ 0\end{gathered}=\frac{1}{3}\left(e^{3 \ln 2}-e^{0}\right)$

$$
=\frac{1}{3}\left(e^{\ln 2^{3}}-1\right)=\frac{1}{3}(8-1)=7 / 3 .
$$

Home Work: Exercises 7.3 Page 493.

7.2 The General Exponential and Logarithmic Functions

(a^{x} and $\log _{a} x$)
NOTE: $\ln x$ is a special case of the general logarithmic $\left(\log _{a} x\right)$ Functions and e^{x} is a special case of the general exponential $\left(\boldsymbol{a}^{x}\right)$.

The general exponential function

$y=f(x)=a^{x},(\mathrm{a}=$ constant, $\mathrm{a}>0$ and $\mathrm{a} \neq 1)$.
The Domain: $(-\infty, \infty)$
The Range: $y>0$
The Derivative of a^{x}
Let $y=a^{u}, u=f(x)$,
Taking $\ln \rightarrow \ln y=\ln a^{u}=u \ln a$
d.w.r.t. $x \rightarrow \frac{1}{y} \frac{d y}{d x}=\ln a \frac{d u}{d x} \rightarrow \frac{d y}{d x}=y \ln a \frac{d u}{d x}$

If $a>0$ and u is a differentiable function of x,

$$
\frac{d a^{u}}{d x}=a^{u} \ln a \frac{d u}{d x}
$$

$$
\int a^{u} d u=\frac{a^{u}}{\ln a}+C
$$

Examples:

(a) $\frac{d 3^{x}}{d x}=3^{x} \ln 3$.
(b) $\frac{d}{d x} 7^{x+1}=7^{x+1} \ln 7$.
(c) $\frac{d 2^{-x}}{d x}=2^{-x} \ln 2(-1)=-2^{-x} \ln 2$.
(d) $\frac{d 3^{\sin x}}{d x}=3^{\sin x}(\ln 3) \cos x$.
(e) $\int 5^{x} d x=\frac{5^{x}}{\ln 5}+C$.

Logarithms with Base a $\left(y=f(x)=\log _{a} x \quad,(\mathrm{a}>0\right.$ and $\mathrm{a} \neq 1)$

Definition: $\log _{a} x$

For any positive number $a \neq 1, \log _{a} x$ is the inverse function of a^{x}.
Domain: $x>0$. Range: $(-\infty, \infty)$.
$a^{\log _{a} x}=x \quad(x>0), \quad$ and $\quad \log _{a}\left(a^{x}\right)=x \quad($ for all $x)$

Examples:
(a) $10^{2}=100 \rightarrow \log _{10} 100=2$
$\left(\log _{a} a^{x}=x \rightarrow \log _{10} 100=\log _{10} 10^{2}=2\right)$
(b) $10^{-2}=\frac{1}{100} \rightarrow \log _{10}\left(\frac{1}{100}\right)=-2$
(c) $2^{5}=32 \rightarrow \log _{2} 32=5$
(d) $a^{0}=1 \rightarrow \log _{a} 1=0$
(e) $a^{1}=a \rightarrow \log _{a} a=1$

NOTE: $\log _{a} x=\frac{\ln x}{\ln a}$
NOTE: The properties of $\log _{a} x$ is the same as the properties of $\ln x$.

The Derivative and Integral of $\log _{a} x$

If $y=\log _{a} u, \quad u=f(x) \rightarrow u=a^{y}$
Taking $\ln \rightarrow \ln u=\ln a^{y}=y \ln a$
$\therefore \ln u=y \ln a$.
D. w.r.t. $x \rightarrow \frac{1}{u} \frac{d u}{d x}=\ln a \frac{d y}{d x} \rightarrow \therefore \frac{d y}{d x}=\frac{1}{u} \frac{1}{\ln a} \frac{d u}{d x}$

$$
\frac{d \log _{a} u}{d x}=\frac{1}{\ln a} \frac{1}{u} \frac{d u}{d x}
$$

$$
\int \log _{a} u d u=\int \frac{\ln u}{\ln a} d u
$$

Examples: (a) $\frac{d}{d x} \log _{5}\left(x^{2}+1\right)=\frac{1}{\ln 5} \frac{1}{x^{2}+1}(2 x)$.
(b) $\int \frac{\log _{2} x}{x} d x=\frac{1}{\ln 2} \int \frac{\ln x}{x} d x=\frac{(\ln x)^{2}}{2 \ln 2}+C$

NOTE: Find dy/dx if $y=x^{x}$.
Taking $\ln \rightarrow \ln y=\ln x^{x}=x \ln x$
D. w. r.t. x. $\rightarrow \frac{1}{y} \frac{d y}{d x}=x \cdot \frac{1}{x}+\ln x .(1) \rightarrow \frac{d y}{d x}=y(1+\ln x)=x^{x}(1+\ln x)$.

Example: Find $\mathrm{dy} / \mathrm{dx}$ if $y^{\frac{2}{3}}=\frac{\left(x^{2}+1\right) \sqrt{3 x+4}}{\sqrt[5]{(2 x-3)\left(x^{2}-4\right)}}$
Solution: taking $\ln \rightarrow \ln y^{\frac{2}{3}}=\ln \frac{\left(x^{2}+1\right) \sqrt{3 x+4}}{\sqrt[5]{(2 x-3)\left(x^{2}-4\right)}}$
$\rightarrow \frac{2}{3} \ln y=\ln \left(x^{2}+1\right)+\frac{1}{2} \ln (3 x+4)-\frac{1}{5}\left\{\left(\ln (2 x-3)+\ln \left(x^{2}-4\right)\right\}\right.$
D. w. r.t. x. \rightarrow
$\frac{2}{3} \frac{1}{y} \frac{d y}{d x}=\frac{2 x}{x^{2}+1}+\frac{3}{2(3 x+4)}-\frac{1}{5} \frac{2}{(2 x-3)}-\frac{1}{5} \frac{2 x}{\left(x^{2}-4\right)}$
$\therefore \frac{d y}{d x}=\frac{3}{2} y\left(\frac{2 x}{x^{2}+1}+\frac{3}{2(3 x+4)}-\frac{1}{5} \frac{2}{(2 x-3)}-\frac{1}{5} \frac{2 x}{\left(x^{2}-4\right)}\right)$

Home Work: Exercises 7.4 Page 500.

Hyperbolic Functions

The hyperbolic functions are formed by taking combinations of the two exponential functions e^{x} and $\mathrm{e}^{-\mathrm{x}}$.

Definitions and Identities

$\sinh x=\frac{e^{x}-e^{-x}}{2}$		
$\cosh x=\frac{e^{x}+e^{-x}}{2}$		
$\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$	$y_{y=1}^{y} \underbrace{y} y=\operatorname{coth} x$	
$\operatorname{coth} x=\frac{\cosh x}{\sinh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$		
$\operatorname{sech} x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$		Identities $\cosh ^{2} x-\sinh ^{2} x=1$ $\sinh 2 x=2 \sinh x \cosh x$ $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$
$\operatorname{csch} x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}}$		$\begin{aligned} & \cosh ^{2} x=\frac{\cosh 2 x+1}{2} \\ & \sinh ^{2} x=\frac{\cosh 2 x-1}{2} \\ & \tanh ^{2} x=1-\operatorname{sech}^{2} x \\ & \operatorname{coth}^{2} x=1+\operatorname{csch}^{2} x \end{aligned}$

Derivatives and Integrals

Derivatives	Integral Formulas
$\frac{d}{d x}(\sinh u)=\cosh u \frac{d u}{d x}$	$\int \sinh u d u=\cosh u+C$
$\frac{d}{d x}(\cosh u)=\sinh u \frac{d u}{d x}$	$\int \cosh u d u=\sinh u+C$
$\frac{d}{d x}(\tanh u)=\operatorname{sech}^{2} u \frac{d u}{d x}$	$\int \operatorname{sech}^{2} u d u=\tanh u+C$
$\frac{d}{d x}(\operatorname{coth} u)=-\operatorname{csch}^{2} u \frac{d u}{d x}$	$\int \operatorname{csch}^{2} u d u=-\operatorname{coth} u+C$
$\frac{d}{d x}(\operatorname{sech} u)=-\operatorname{sech} u \tanh u \frac{d u}{d x}$	$\int \operatorname{sech} u \tanh u d u=-\operatorname{sech} u+C$
$\frac{d}{d x}(\operatorname{csch} u)=-\operatorname{csch} u \operatorname{coth} u \frac{d u}{d x}$	$\int \operatorname{csch} u \operatorname{coth} u d u=-\operatorname{csch} u+C$

Examples: Find the following derivatives and integrals
(a) $\frac{d}{d x}\left(\tanh \sqrt{1+x^{2}}\right)=\operatorname{sech}^{2} \sqrt{1+x^{2}} \frac{1}{2}\left(1+x^{2}\right)^{-\frac{1}{2}}(2 x)$

$$
=\frac{x}{\sqrt{1+x^{2}}} \operatorname{sech}^{2} \sqrt{1+x^{2}}
$$

(b) $\int \operatorname{coth} 3 t d t=\int \frac{\cosh 3 t}{\sinh 3 t} d t=\frac{1}{3} \int \frac{3 \cosh 3 t d t}{\sinh 3 t}=\frac{1}{3} \ln |\sinh 3 t|+C$.
(c) $\int_{0}^{1} \cosh ^{2} x d x=\int_{0}^{1} \frac{\cosh 2 x+1}{2} d x=\frac{1}{2} \int_{0}^{1}(\cosh 2 x+1) d x$

$$
\begin{aligned}
& =\left.\frac{1}{2}\left(\frac{1}{2} \sinh 2 x+x\right)\right|_{0} ^{1}=\frac{1}{2}\left\{\left(\frac{1}{2} \sinh 2-\sinh 0\right)+(1-0)\right\} \\
= & \frac{\sinh 2}{4}+\frac{1}{2} \approx 1.4067
\end{aligned}
$$

Home Work: Page 534 (Derivatives and Integrals).

Inverse Hyperbolic Functions

The inverses of the six basic hyperbolic functions are very useful in integration.
Derivatives and Integrals of Inverse Hyperbolic Functions

Derivatives	Integrals Formulas
$\frac{d\left(\sinh ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1+u^{2}}} \frac{d u}{d x}$	1. $\int \frac{d u}{\sqrt{1+u^{2}}} \sinh ^{-1} u+C$
$\frac{d\left(\cosh ^{-1} u\right)}{d x}=\frac{1}{\sqrt{u^{2}-1}} \frac{d u}{d x}$,	2. $\int \frac{d u}{\sqrt{u^{2}-1}}=\cosh ^{-1} u+C$
$\frac{d\left(\tanh ^{-1} u\right)}{d x}=\frac{1}{1-u^{2}} \frac{d u}{d x}$,	3. $\int \frac{d u}{\sqrt{1-u^{2}}}=-\operatorname{sech}^{-1} u+C$
$\frac{d\left(\operatorname{coth}^{-1} u\right)}{d x}=\frac{1}{1-u^{2}} \frac{d u}{d x}$,	4. $\int \frac{d u}{u \sqrt{1+u^{2}}}=-\operatorname{csch}^{-1} u+C$
$\frac{d\left(\operatorname{sech}^{-1} u\right)}{d x}=\frac{-d u / d x}{u \sqrt{1-u^{2}}}$,	5. $\int \frac{d u}{1-u^{2}}=\left\{\begin{array}{l}\tanh ^{-1} u+C, u<1 \\ \operatorname{coth}^{-1} u+C, u>1\end{array}\right.$
$\frac{d\left(\operatorname{csch}^{-1} u\right)}{d x}=\frac{-d u / d x}{\|u\| \sqrt{1+u^{2}}}$,	

Home Work: Page 542 (Derivatives and Integrals).

